Roopa R. A and Mantelingu. /Asian Journal of Research in Chemistry and Pharmaceutical Sciences. 7(2), 2019, 353-362. Research Article ISSN: 2349 – 7106

Asian Journal of Research in Chemistry and Pharmaceutical Sciences

Journal home page: www.ajrcps.com

SPECTROPHOTOMETRIC ANALYSIS OF HYDROGEN PEROXIDE WITH ITS APPLICATIONS ILLUSTRATED BY PEROXIDASE ASSAY

Roopa R. A^{*1} and K. Mantelingu²

^{1*}Pooja Bhagavat Memorial Mahajana PG Centre, University of Mysore, Mysore, India. ²Synthetic Laboratory, DOS in Chemistry, University of Mysore, Manasagangotri, Mysore, India.

ABSTRACT

Hydrogen peroxide (H₂O₂) is an essential compound in food, pharmaceutical, clinical, industrial and environmental analysis. H₂O₂ has been widely used for preservation of food products due to its bactericidal properties. However, excess of H₂O₂ can be deleterious on the nutritional value of food. In the present research work a simple and sensitive spectrophotometric assay was developed for the quantification of H₂O₂ in different samples. This method involves the reaction of Iso-nicotinic acid hydrazide (INH) and pyrocatechol (PC) as cosubstrates in presence peroxidase enzyme and H₂O₂ to form a colored product, which has strong absorbance at $\lambda_{max} = 520$ nm. The effects of different parameters on the sensitivity of the proposed assay were studied. The Michaelis-Menten constant and catalytic efficiency were also calculated. Some of the important advantages of the proposed method are, use of inexpensive reagents, simple operation conditions, rapid analysis, wide linear range, high sensitivity, free from interfering substances and precision comparable to the reference Gilliland method. The proposed method was used for analysis of different samples.

KEYWORDS

Peroxidase, Hydrogen peroxide, Iso-nicotinicacidhydrazide and Pyrocatechol.

Author for Correspondence:

Roopa R. A,

Pooja Bhagavat Memorial Mahajana PG Centre,

University of Mysore, Mysore, India.

Email: roopa13th@gmail.com

Available online: www.uptodateresearchpublication.com

INTRODUCTON

Hydrogen peroxide is the two-electron reduction product of O_2 . It is not a free radical, but potentially reactive oxygen¹. Hydrogen peroxide produced in plants chloroplast and mitochondria via electron transport, where oxygen is reduced to superoxide, which is further dismuted into H_2O_2 spontaneously or catalyzed by dismutase².

There is increasing interest for rapid and accurate detection of hydrogen peroxide because it exists as the product of reactions catalyzed by many selective

oxidases, besides it is also an essential compound in food, pharmaceutical, clinical, industrial and environmental analysis³. H_2O_2 has been widely used for preservation of raw foods due to its bactericidal properties⁴. However, excess of H_2O_2 can be deleterious on the nutritional value of food due to degradation of essential vitamines⁵.

A variety of analytical methods have been developed for the assay of H_2O_2 including titrimetry⁶, spectrofluorometry⁷⁻⁹, chemiluminescence^{10,11}, high performance liquid chromatography¹² and electrochemistry¹³⁻¹⁸. All these methods have achieved great success as well as some shortcomings like lack of sensitivity, susceptibility to interference by foreign substances in samples, need for waste expensive biocatalyst and long time analysis. The spectrophotometer is of great use to overcome these drawbacks because of its inherent simplicity, inexpensiveness, facile nature and wide availability.

Some of the common chromogenic co-substrates are used for determination of hydrogen peroxide guaiacol¹⁹, 2. 2-azinobis(3includes ethylbenzothiazoline-6-sulphonicacid)²⁰, benzidine, p-phenylenediamine²¹, pyrogallol²², 3, 3, 5, 5- $(TMB)^{23}$. tetramethylbenzidine 0phenylenediamine, o-dianisidine²⁴. catechol, tetramethyl-p-phenylenediamine $(TMPD)^{25}$, pphenylenediamine-3-dimethylaminobenzoic acid²⁶ 3-methyl-2-benzothiazolinonehydrazone and hydrochloride with 10, 11- dihydro-5H-benz (b, f) azepine²⁷. But use of these reagents have some limitations such as carcinogenicity, mutagenicity, poor solubility, poor sensitivity. In order to overcome the some of the limitations of the above co-substrates INH and PC are used as chromogenic co-substrates, which are easily soluble in water.

In this paper, we have developed a simple colorimetric method to quantify H_2O_2 based on biocatalysis of POD. The technique is based on the reaction of H_2O_2 with Iso-nicotinic acid hydrazide (INH) and pyrocatechol (PC) to form a colored compound, which is monitored at 520 nm. This analytical method can be employed to determine H_2O_2 in different samples.

Available online: www.uptodateresearchpublication.com

MATERIAL AND METHODS Reagents and apparatus

(EC.1.11.1.7, Peroxidase 100units/mg) was purchased from Himedia Laboratories (Mumbai, India). The stock solution of the enzyme was prepared by dissolving 2mg in 10ml of 100mM KH₂PO₄/ NaOH buffer of pH 6.0. Working solutions were prepared from the stock solution by appropriate dilution with water. H₂O₂ stock solution was prepared by diluting the commercial reagent (30%, v/v E. Merck, Mumbai, India). Pyrocatechol solution was prepared by dissolving 30 mg sample in 10 ml of distilled water. Iso-nicotinic acid hydrazide solution was prepared by dissolving 30 mg sample in 10 ml distilled water. All other reagents used were of analytical grade.

A Jasco model UVIDEC-610 ultraviolet-visible (UV-Vis) spectrophotometer with 1.0 cm matched cells was used for all absorption measurements. Temperature controlled thermostat (model 206-88950-93, Shimadzu, Japan) was used for maintaining the reaction temperature. All pH measurements and adjustments of pH were done by a digital pH meter (model EQ-614, Equip-tronics, Mumbai, India).

Hydrogen peroxide assay protocol

The concentration of H_2O_2 was measured in 3 ml solution containing 650µM INH, 845µM PC and 9.5nM horseradish peroxidase with 100mM KH₂PO₄/NaOH buffer at pH 7. The reaction was initiated at 30°C by adding 100µL of different concentrations of H₂O₂. Data of progress curve was resolved in 5 min against the corresponding control containing all the reagents except H₂O₂. The initial rate of reaction was calculated from the time domain of 1 min at 520 nm. The calibration graph was obtained by plotting rate against concentration of H₂O₂. In fixed time method, the linearity of H₂O₂ was quantified by incubating the reaction mixture for 10 min at 30°C, and absorbance was measured for the colored solution.

RESULTS AND DISCUSSION

Optimization of experimental variables

Various factors influencing the activity of H_2O_2 and horseradish peroxidase were investigated, which April – June 354

includes pH of the solution, temperature of the reaction mixture, concentration of PC and INH solution. Optimization of pH was done by using different buffer solutions such as citric acid/potassium 3.6-5.6), citrate buffer (pH potassium dihydrogen orthophosphate/sodium hydroxide buffer (pH 6.0-8.0), acetate/acetic acid buffer (pH 3.6-5.6), and potassium dihydrogen orthophosphate/ dipotassium hydrogen phosphate buffer (pH 6.0-7.5). The highest activity was observed in 100mM KH₂PO₄/NaOH buffer of pH 7.0 (Figure No.1).

The concentration of PC on the reaction rate was studied in the range of $113 - 3632\mu$ M. The result showed that the rate of reaction increased with increase in the concentration of the PC up to 845 μ M, beyond which the rate was independent of the concentration of PC. Hence, for further assays PC concentration of 845 μ M was selected. Similarly, the effect of concentration of INH on the reaction rate showed that the rate of reaction increased with increasing concentration of INH up to 650 μ M, beyond which the rate was inhibited. Hence, 650 μ M INH was chosen as the optimum concentration for all further assays. (Data were not shown)

Figure No.2 shows the temperature curve for reaction. As the temperature was raised above 30°C the colored product intensity decreased; this can be attributed to a gradual decline in HRP activity due to heat inactivation. Based on this result, temperature of 30°C was chosen for further assays. At this temperature enzymatic assay reached maximum activity.

Horseradish Peroxidase assay

The concentration of POD was quantified in a 3 ml solution containing 650μ M INH, 845μ M PC, 128μ M H₂O₂ in 100mM KH₂PO₄/NaOH buffer at pH 7. The reaction was initiated at 30°C by adding 100 μ L of different concentrations of HRP. The POD concentrations, studied for the assay were in the range of 0.039 to 151nM. The progress curve was measured in a period of 5 min against the corresponding control containing all the reagents except POD. The initial rate of reaction was calculated from the time domain of 1 min at 520 nm. The calibration graph was obtained by plotting

Available online: www.uptodateresearchpublication.com

rate against concentration of HRP. In fixed time method, the linearity of HRP was quantified by incubating the reaction mixture for 10 min at 30°C, and absorbance was measured for the colored solution. The results showed that the rate of the reaction increased with increase in the concentration of HRP up to 19nM. The calibration graph for HRP assay shows linearity in the range of 0.59 - 18.92nM and 0.59 - 9.5nM (Figure No.3) by kinetic and fixed time methods respectively.

Hydrogen peroxide assay

H₂O₂ assay was carried out in a series of H₂O₂ concentrations ranging from 0.5 to 200µM. It is found that the rate of the reaction increased with increase in the concentration of H_2O_2 up to 110 μ M, beyond which the rate of the reaction decreased. The calibration graph for H_2O_2 exhibited linearity in the range of 0.5-65 µM (Figure No.4). The linearity of H₂O₂ assay in the proposed method was observed in a comparatively wider range. Moreover, the initial concentration of H_2O_2 is as low as 0.5µM, the detection limit, quantification limit and molar extension co-efficient determined by fixed time assay were 0.62 μ M, 2.13 μ M and 0.381×10⁵ L/mol/cm, respectively. Low detection limit and wide linearity range demonstrate that the established method may be an excellent method for the determination of H_2O_2 in different samples. Moreover, the reagents used are simple and the operation procedures are very simple.

Interference Study

The optimal reaction conditions and 30 µM hydrogen peroxide was used for the interference study, the feasibility of the method for application in samples was studied by taking various proteins, ions, and other commonly accompanying amino acids in sample. Except ascorbic acid none of the other foreign species studied were not interfered in the quantification. The tolerance ratios are tabulated Table No.1. which correspond to the in concentration of interfering species that cause an interference of $\pm 3\%$ in its quantification. The result showed that large number of ions, amino acids, and carbohydrates examined did not interfere in the assay.

Samples Analysis

Milk sample analysis

The feasibility of the proposed colorimetric method was tested for measuring H₂O₂ in different animal milk samples. The analyses of H₂O₂ in these samples were carried out by standard addition method shows (Table No.2) the typical spectrophotometric determination of H_2O_2 in 5 different milk samples using the proposed method. The results show that Goat milk samples contained minimum amount of H₂O₂, whereas commercial (market) milk sample has maximum H2O2 concentration. Because H₂O₂ has been widely used for preservation of raw milk due to its bactericidal properties⁴. However, excess of H₂O₂ can bring deleterious effects on the nutritional value of milk such as the degradation of folic acid, which is an essential vitamin to human body. Hence goat and sheep milks may be good for drinking purpose than commercial milk. The feasibility of the developed method was further examined by recovery tests. The results (Table No.2) indicated that the proposed method possesses reasonable selectivity and produces satisfactory recovery of 98.5- 101.0 % as compared to 98.5 - 102.0 % by reference ABTS method.

Rain water sample analysis

The proposed method was applied for the analysis of H₂O₂ concentration in different rain water samples. The results obtained by the proposed method are comparable favorably with those of a reference method. From the data it is observed that the industrial region rain water contained high concentration of H₂O₂ as compared to urban and rural region rain water samples. The areas with higher concentrations of H₂O₂ are regions with a high photochemical activity due to intense levels of solar radiation and with a large scale transport of polluted air²⁸. The feasibility of the developed method for the determination of H₂O₂ in rain water samples was further confirmed by conducting recovery tests. The results indicated that the proposed method possesses reasonable selectivity and produces satisfactory recovery results with recovery range of 98.32 to 101.9%.

Available online: www.uptodateresearchpublication.com

Mineral waters analysis

In the 1950's, hydrogen peroxide was first used for drinking water disinfection in Eastern Europe. It is known for its high oxidative and biocidal efficiency. Hydrogen peroxide has not been used often for drinking water disinfection. But it's popularity seems to increase. It is often used combined with ozone or silver. Eight different mineral waters were analyzed by using standard addition method. The relative standard deviations (RSD) were all below 3.0% for ten successive measurements, which indicated that the proposed assay possesses a good reproducibility (Table No.4). The recovery was preferable, indicating that the proposed method could be used for the determination of H₂O₂ in real samples.

Packed fruit juice sample analysis

Ascorbic acid and its derivatives are used in many foods for various purposes. They are added to foods, including fruit juices, to improve the nutritional quality and to prevent enzymatic browning reactions. Ascorbic acid is also used as an index of the nutrient quality of fruit and vegetable products. This is because, as compared to other nutrients, it is much more sensitive to various modes of degradation in food processing and subsequent storage. Therefore, it is assumed that, if the ascorbic acid is well retained during processing and storage, other nutrients would be as well.

Ascorbic acid degradation in packaged fruit juices depends mainly on storage temperature, dissolved oxygen level, residual H₂O₂ left after the sterilization of packaging material and trace metal ions. H₂O₂ is the primary chemical for the sterilization of plastic packaging material used in systems. FDA (Food aseptic and Drug Administration) regulation currently limits residual H₂O₂ to 9.7 micromolar, leached into distilled water, in finished food packages. However, during the sterilization of packaging materials with H₂O₂, residues left on the packaging material or vapours generated during drying may get trapped inside the package upon sealing. Therefore, residues left inside packages may occasionally be over the legal limit and particularly cause the degradation of ascorbic $acid^{29}$.

In this study, orange, sour cherry, grape and pomegranate juices were selected. Orange juice is an important source of ascorbic acid in the human diet (Table No.5). The result shows that one of the orange juice sample contains more than the limiting value of hydrogen peroxides.

S.No	Interference species	Tolerance Ratio [*]
1	Ascorbic acid	1.38
2	L-Cystein	5.75
3	Folic acid, Ferric Oxide	8.91
4	Urea, L-glutamic acid, D-Fructose	23.92
5	Lacto globulin, Lacto albumin	33.79
6	Lactose	47.85
7	Cholesterol	63.79
8	Calcium, Potassium	71.11
9	Glucose	95.70
10	Sodium, Magnesium(II), Zinc(II)	101.21
11	Sucrose	114.84
12	Uric acid	133.98
13	Citric acid	574.20

Table No.1: Influence of interfering species for the quantification of hydrogen peroxide

Table No.2: Analytical recovery of Hydrogen peroxide in different animal milk samples

	Milk Samples	Proposed method				Standard method			
S.No		H ₂ O ₂	Added	Found	Recovery *	H ₂ O ₂	Added	Found	Recovery *
		(µM)	(µM)	(µM)	(%)	(µM)	(µM)	(µM)	(%)
1	Market	8.3	20	28.1	99.0	8.7	20	28.6	99.5
1	available		100	108.5	100.2		100	109.3	100.6
2	Buffalo	7.3	20	27.2	99.5	7.7	20	28.1	102.0
2			120	128.5	101.0		120	127.9	100.1
3	Cow	7.1	32	38.7	98.7	6.9	32	50	101.5
			128	134.8	99.7		128	148.4	102.2
4	Sheep	5.6	82	88.1	100.6	6.1	82	88.5	100.4
4			32	37.9	100.9		32	38.6	101.5
5	Goat	3.3	20	23	98.5	3.9	20	23.6	98.5
			100	103.8	100.5		100	104.9	101

*[(Found H_2O_2 concentration – initial H_2O_2 concentration)/added H_2O_2 concentration] ×100

Roopa R. A and Mantelingu. /Asian Journal of Research in Chemistry and Pharmaceutical Sciences. 7(2), 2019, 353-362.

S.No	Rain water Samples	Proposed method				Reference method			
		H2O2 ^a (µM)	Added (µM)	Found (µM)	Recovery* (%)	H2O2 ^a (µM)	Added (µM)	Found (µM)	Recovery* (%)
1	Industrial area	13.1	25	38.5	101.6	13.24	25	37.82	98.32
2	Urban area	8.65	50	58.1	98.9	8.15	50	59.13	101.9
3	Rural area	4.88	75	78.94	98.7	5.01	75	81.2	101.5

Table No.3: Analytical recovery of Hydrogen peroxide in rain water samples

^a Mean of triplicate measurement.

*[(Found H_2O_2 concentration – initial H_2O_2 concentration)/added H_2O_2 concentration] ×100

Table No.4: Analytical table for Hydrogen peroxide in mineral water samples

S.No	Samples	Add H2O2 (µM)	Found H ₂ O ₂ (µM)	RSD	Recovery
1	Bisleri	25	25.09	1.2	100.1
2	Kinley	25	25.06	1.8	102.2
3	Aquafina	25	26.1	2.2	101.5
4	Bailey	25	25.08	1.6	102.8
5	Himalayan Mineral Water	50	51.3	2.1	100.7
6	Kingfisher Mineral Water	50	51.1	1.5	101.2
7	Qua Mineral Water	50	51.7	1.9	103.1
8	Manikchand Oxyrich Mineral Water	50	52.0	2.5	102.9

Table No.5: Analytical table for Hydrogen peroxide in packed fruit juice samples

S.No	Sampl	Concentration of H ₂ O ₂ (µM)	
1	Orongo Juico	Sample 1	10.0
	Oralige Juice	Sample 2	9.3
2	Sour aborry Inico	Sample 1	9.7
	Sour cherry Juice	Sample 2	7.1
3	Crone Iviae	Sample 1	6.8
	Grape Juice	Sample 2	6.3
4	Romagranata iujaa	Sample 1	9.5
	Fomegranate Juice	Sample 2	8.9

Figure No.1: Effect of pH on the activity of enzyme

April – June

Available online: www.uptodateresearchpublication.com

358

Figure No.3: Analytical curve for the quantification of POD via (*) kinetic assay and (•) fixed time assay

Figure No.4: Analytical curve for the quantification of Hydrogen peroxide

Available online: www.uptodateresearchpublication.com April – June

359

CONCLUSION

We have successfully developed а new spectrophotometric method, which afforded a new route for the determination of ultra-trace amounts of H_2O_2 in different samples. The method is based on the HRP - catalyzed reaction of INH and PC with the biocatalytic self-coupling of the reactants in the presence of H₂O₂. The proposed method has the almost widest linear range and lowest detection limit. Such a wide linear range and a low detection limit demonstrate that the established method may be an excellent method for the determination of H₂O₂ in different samples. This method has merits of use of cheap reagents, simple operation conditions, rapid analysis, wide linear range, high sensitivity, free from interfering substances and precision comparable to the reference method. Hydrogen peroxide is not mentioned in the European Drinking Water Standard 98/83/EC. In the USA, hydrogen peroxide is registered as a pesticide by the EPA in 1977. But still many companies using the Hydrogen peroxide for sterilization purpose in packing material.

ACKNOWLEDGEMENT

The authors are sincerely thanks to the Pooja Bhagavat Memorial Mahajana PG Centre, University of Mysore, Mysore, India for providing the facilities to complete this research work.

CONFLICT OF INTEREST

We declare that we have no conflict of interest.

BIBILIOGRAPHY

- Halliwell B and Gutteridge J. Free radicals in biology and medicine, *Oxford: Oxford University Press*, 3rd Edition, 1999, 936.
- 2. Asada K. The water-water cycle in chloroplast: Scavenging of active oxygen and dissipation of excess photons, *Annual Review of Plant Physiology and Plant Molecular Biology*, 50, 1999, 601-639.
- 3. Wang J, Lin Y, Chen L. Organic-phase biosensors for monitoring phenol and hydrogen peroxide in pharmaceutical

Available online: www.uptodateresearchpublication.com

antibacterial products, *Analyst*, 118(3), 1993, 277-280.

- 4. Haddadin M S, Ibrahim S A, Robinson R K. Preservation of raw milk by activation of the natural lactoperoxidase systems, *Food Control*, 7(3), 1996, 149-152.
- 5. Taher M M, Lakslunaiah N. Folic acid stability in hydrogen peroxide-potassium thiocyanate-treated milk, *Food Chemistry*, 44(5), 1992, 343-347.
- Prasada Rao M S, Mohan Rao A R, Ramana K V, Sagi S R. Thallimetric oxidations—V: titrimetric and spectrophotometric determination of hydrogen peroxide, *Talanta*, 37(7), 1990, 753-755.
- 7. Tang B, Wang Y. Spectrofluorimetric determination of both hydrogen peroxide and -O-O-H in polyethylene glycols (PEGs) using 2-hydroxy-1-naphthaldehyde thiosemicarbazon (HNT) as the substrate for horseradish peroxidase (HRP), *Spectrochimica Acta Part A Molecular and Biomolecular Spectroscopy*, 59(12), 2003, 2867-2874.
- 8. Chen H, Yu H, Zhou Y, Wang L. Fluorescent quenching method for determination of trace hydrogen peroxide in rain water, *Spectrochimica Acta - Part A Molecular and Biomolecular Spectroscopy*, 67(3), 2007, 683-686.
- Abbas M E, Luo W, Zhu L, Zou J, Tang H. Fluorometric determination of hydrogen peroxide in milk by using a Fenton reaction system, *Food Chemistry*, 120(1), 2010, 327-331.
- 10. Zhou G J, Wang G, Xu J J, Chen H Y. Reagentless chemiluminescence biosensor for determination of hydrogen peroxide based on the immobilization of horseradish peroxidase on biocompatible chitosan membrane, *Sensors Actuators: B Chemical*, 81(2-3), 2002, 334-339.
- 11. Hu X, Han H, Hua L, Sheng Z. Electrogenerated chemiluminescence of blue emitting ZnSe quantum dots and its biosensing for hydrogen peroxide,

Biosensors Bioelectronics, 25(7), 2010, 1843-1846.

- 12. Tarvin M., McCord B, Mount K, Sherlach K, Miller M L. Optimization of two methods for the analysis of hydrogen peroxide: High performance liquid chromatography with fluorescence detection and high performance liquid chromatography with electrochemical detection in direct current mode, *Jounal of Chromatography A*, 1217(48), 2010, 7564-7572.
- 13. Lin Y, Cui X, Li L. Low-potential amperometric determination of hydrogen peroxide with a carbon paste electrode modified with nanostructured cryptomelane-type manganese oxides, *Electrochemistry Communications*, 7(2), 2005, 166-172.
- 14. Xu Y, Peng W, Liu X, Li G. A new film for the fabrication of an unmediated H₂O₂ biosensor, *Biosensors Bioelectronics*, 20(3), 2004, 533-537.
- 15. Guascito M R, Filippo E, Malitesta C, Manno D, Serra A, Turco A. A new amperometric nanostructured sensor for the analytical determination of hydrogen peroxide, *Biosensors Bioelectronics*, 24(4), 2008, 1063-1069.
- 16. Shamsipur M, Kazemi S H, Mousavi M F. Impedance studies of a nano-structured conducting polymer and its application to the design of reliable scaffolds for impedimetric biosensors, *Biosensors Bioelectronics*, 24(1), 2008, 104-110.
- 17. Guascito M R, Chirizzi D, Malitesta C, Mazzotta E, Siciliano M, Siciliano T. Lowpotential sensitive H_2O_2 detection based on composite micro tubular Te adsorbed on platinum electrode, *Biosensors Bioelectronics*, 26(8), 2011, 3562-3569.
- Zhu S, Fan L, Liu X, Shi L, Li H, Han S. Determination of concentrated hydrogen peroxide at single-walled carbon nanohorn paste electrode, *Electrochemistry Communications*, 10(5), 2008, 695-698.
- 19. Da Cruz Vieira I. Flow injection spectrophotometric determination of

Available online: www.uptodateresearchpublication.com

hydrogen peroxide using a crude extract of zucchini (Cucurbita pepo) as a source of peroxidase, *Analyst*, 123(9), 1998, 1809-1812.

- 20. Duarte-Vazquez M A, Garcia-Padilla S, Garcia-Almendarez B E, Whitaker J R, Regalado C. Broccoli processing wastes as a source of peroxidase, *Journal of Agricultural Food Chemistry*, 55(25), 2007, 10396-10404.
- 21. Vygodina T V, Konstantinov A A. Peroxidase activity of mitochondrial cytochrome c oxidase, *Biochemistry*, 72(10), 2007, 1056-1064.
- 22. Bilijana B, Mirta T, Marijana K R. Peroxidase activity and isoenzymes in relation to morphogenesis in mammalaria gracillus tissue culture, *Period Biology*, 105(3), 2003, 281-286.
- 23. Johnsen A R, Jacobsen O S. A quick sensitive method for the quantification of peroxidase activity of organic surface soil from forests, *Soil Biology and Biochemistry*, 40(3), 2008, 814-821.
- 24. Dogan S, Turan P, Dogan M, Arslan O, Alkan M. Partial characterization of peroxidase from the leaves of thymbra plant (Thymbra spicata L. var. spicata), *European Food Research and Technology*, 225(5), 2007, 865-871.
- 25. Vrzheshch P V, Tsaplina L A, Sakharova I S. Kinetic models of cyclooxygenase and peroxidase inactivation of prostaglandin-H-synthase during catalysis, *Biochemistry* (*Mosc*), 72(8), 2007, 828-834.
- 26. Nagaraja P, Shivakumar A, Shrestha A K. Peroxidase-catalyzed oxidative coupling of paraphenylenediamine with 3dimethylaminobenzoic acid: application in crude plant extracts, *Journal of Agricultural Food Chemistry*, 57(12), 2009, 5173-5177.
- 27. Nagaraja P, Shivakumar A, Shrestha A K. Quantification of hydrogen peroxide and glucose using 3methylbenzothiazolinonehydrazone hydrochloride with 10, 11-dihydro-5H-benz

Roopa R. A and Mantelingu. /Asian Journal of Research in Chemistry and Pharmaceutical Sciences. 7(2), 2019, 353-362.

(b, f) azepine as chromogenic probe, *Analytical Biochemistry*, 395(2), 2009, 231-236.

- 28. Pena R M., Garcia S, Herrero C, Lucas T. Measurements and analysis of hydrogen peroxide rainwater levels in a northwest region of spain, *Atmospheric Environment*, 35(2), 2001, 209-219.
- 29. Mehmet Ozkan, Aysegul Kırca, Bekir Cemeroglu. Effects of hydrogen peroxide on the stability of ascorbic acid during storage in various fruit juices, *Food Chemistry*, 88(4), 2004, 591-597.

Please cite this article in press as: Roopa R. A and Mantelingu. Spectrophotometric analysis of hydrogen peroxide with its applications illustrated by peroxidase assay, *Asian Journal of Research in Chemistry and Pharmaceutical Sciences*, 7(2), 2019, 353-362.